Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization
نویسنده
چکیده
INTRODUCTION Helicobacter pylori, a Gram-negative, microaerophilic bacterium, has co-existed with humans beings as a prominent member of their gastric microbiota for approximately 105 years (Moodley et al., 2012). It infects approximately half the world’s population, and most infected individuals are asymptomatic, but histologically exhibit superficial gastritis (The EUROGAST Study Group, 1993). Only a minority of infected individuals develop gastric or duodenal ulcers that necessitate treatment. Prolonged inflammation caused by chronic (often lifelong) infection predisposes a small fraction of infected individuals to develop gastric adenocarcinoma or lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma) (Passaro et al., 2002). Unfortunately, the prognosis for cases of gastric cancer is very poor, with 5-year survival rates being lower than 15% (Peek and Blaser, 2002). A mechanism for carcinogenesis ensuing from H. pylori-triggered inflammation was first proposed by Pelayo Correa (Correa, 1992; Correa and Piazuelo, 2012). Briefly, chronic inflammation causes superficial gastritis that progresses over time to multifocal atrophic gastritis (MAG), characterized by the destruction of gastric glands. This is followed by intestinal metaplasia, wherein gastric epithelium undergoes an “epithelialmesenchymal transition” and begins to exhibit an intestinal phenotype. The subsequent stage consists of dysplasia culminating in invasive carcinoma, which completes the “pre-cancerous cascade.” The final outcome is also dependent on host and pathogen genotypes, as well as environmental factors such as socioeconomic indicators, a high-salt diet, low fruit/vegetable intake and smoking (Khalifa et al., 2010). Most notably, H. pylori is the sole bacterium to be classified by the WHO as a class I carcinogen (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 1994).
منابع مشابه
DNA methylation: a marker for carcinogen exposure and cancer risk.
Cancers arise as a consequence of multiple genetic and epigenetic alterations. Many genes aberrantly methylated in cancers have been identified in recent years, and their use in cancer diagnosis and therapy is currently under investigation. During our genome-wide screening for a novel tumor-suppressor gene in gastric cancers, we found that only a small amount of aberrant methylation was present...
متن کاملMolecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers.
Infection-associated cancers account for a large proportion of human cancers, and gastric cancer, the vast majority of which is associated with Helicobacter pylori infection, is a typical example of such cancers. Epigenetic alterations are known to occur frequently in gastric cancers, and H. pylori infection has now been shown to induce aberrant DNA methylation in gastric mucosae. Accumulation ...
متن کاملEpigenetic field for cancerization: its cause and clinical implications
Epigenetic alterations are present not only in cancer cells but also in non-cancerous tissues. Accumulation levels of aberrant DNA methylation in non-cancerous tissues can correlate with risk of cancer development, especially in chronic inflammation-associated cancers [1-3]. The close correlation in non-cancerous tissues was prominent for epigenetic alterations, compared with genetic alteration...
متن کاملEffect of Helicobacter pylori DNA in human atherosclerotic plaques
Introduction: A number of studies have demonstrated that infectious mico organisms like helicobacter pylori may play a role in the process of atherosclerosis. We, here, aimed to investigate the effect of Helicobacter pylori DNA in atherosclerotic plaques in patients with coronary artery disease. Methods: In a cross-sectional study, 85 patients undergoing coronary artery bypass graft (CAB...
متن کاملPhasevarion Mediated Epigenetic Gene Regulation in Helicobacter pylori
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-va...
متن کامل